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The study of the asymptotic behavior of the solutions of Navier-Stokes equa-
tions for large values of the Reynolds number necessitates the integration
of the Prandtl boundary layer equations for nonuniform veloclty and enthalpy
profiles in the inltial section or on bodies extending to infinity upward
and downward along the flow.

The present paper offers transformations which make it possible to reduce
these problems to a form permitting the use of known self-similar sclutions
and well-developed numerical [1 and 2] or analytic [3 and 4] methods for the

integration of boundary layer equatlions on flnite or semi-infinite bodles in
uniform free flows.

The first Section is an investigation of a laminar boundary layer in a
compressible gas with-nonuniform velocity and enthalpy profiles in the 1ni-
tlal cross section. The second section concerns the problem of the boundary
layer on a body extending to infinity upward and downward along the flow.

1. The equations of a two-dimensional laminar layer in a compressible gas
can be conveniently considered in the form proposed in [5] (Dorodnitsyn -Lees
variables )

(VFY + 11+ 2w (B — 1) = 22T =11 N = g (1)

(Se)+1e +52[N(1—3)rr] =208 —re) u=udf &) (12

X J '
E=t o+ omentiin, = fody, H=Hen (19)
VZE

where x 1s the coordinate measured along the surface of the body from the
initlal point of integratlon; the subscripts O and w denote values of
quantities on the outer boundary of the boundary layer and at the surface of
the body: ¢ 1s the Prandtl number; J = O or 1 for plane and axisymmet-
rical flows, respectively; # 1s the stagnation enthalpy; u 1s the velo-
city component along the x~axls; the prime denotes differentiation with
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respect to n , the dot differentiation wlth respect to ¢

The distinctlon from the usual form of the varlables consists in the fact
that the quantity £°#¢ O 1in Formula (1.3). This 1is necessary, since for
x = O we are given the initial conditions

FE,M=%Mm  gE, M= M (1.4)
If, as usual, €= O , then by Formula {1.3), the quantity n goes to
infinity at x°= O for small but finite y .

As regards the functlon X(ﬂ) we acssume that the leading term 1n its ex-
pansion as 71 - O can be represented in the form

x{n ~n" (1.5)
where n 1s some constant. It 1s clear that the point (£ = 2°, 7 = 0) is
generally singular for the problem which we have formulated.

In integrating the boundary layer equations near this singular point we
cannot make use of system (1.1),(1.2), since the application of any numerical
method here would require infinite condensation of the computational grid as
the singularity was approached.

In order to elimlnate this difficulty, we propose the use of the following
variables in the neighborhood of the singular point: (1.6)
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Upon conversion to these variables, Equations (1.1) and (1.2) become
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The prime here denotes differentiation with respect to n;, and the dot
with respect to g,

It 1s easy to see that for £,= 0 one can arrive at a solution which
depends solely on mn; . The boundary condltlions for n= 0 are the usual
ones., Formula (1.6) indicates that the corresponding value of =7, tends to
infinity with €,= O for arbitrarily small but finite values of n . This
means that in determining the boundary conditlions on the ocuter boundary
m,~ « for system (1.7),(1.8) one ought to take the corresponding values of
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the varisbles in the specified initial profille for n = O (1.e. at the wall).
8.=0, h(0, c0)=g(¢,0), limg' (0, ny)~limx(n)
7;—+00 n—+0

Specifically, if the velocity for n = 0 1in the initial profile is not
zero, then n = O , and the velocity at the outer boundary of the inner layer
is equal to the velocity at the wall in the external profile

9 (0, o) = f (£°,0)

We note alsc that Equations (1.7) and (1.8) in this case coincide in form
with Equations (1.1) and (1.2). A local solution is clearly the solution
for a flat plate or for the corresponding flow with a variable velocity at the
outer boundary.

Let us also consider the case n = 1 , up= const . For £, O , the dis-
sipative term in the energy equation vanishes for all n # 0 ; this is quite
understandable from the physical standpoint. The momentum equation and
boundary conditions for n =1 and ¥ =1 Dbecome

" 4 2 ’ : ”
'+ 399" —5¢2=0, lim¢"=7( 0 fom—oo
The solution of this problem is the local Couette solution

9"’ (0, m) = f (£°, 0) = const
Thus, initial profiles (1.4) are specified oa the first characteristic in
the outer part. Near the aingular point the problem does not require initial
conditlions and reduces, as in the conventional case, to the integration of a
system of ordinary differential equations with boundary conditions specified
on different boundaries of the region.

The boundary conditions on the body surface for a nonpermeable surface at
a specified temperature are of the usual form.

Making use of Pormulas (1.6), one can readily write out the boundary con-
ditions for other cases.

On the other characteristics £ = const or ¢g,= const integration can
be carried out over any variables. It is convenient, however, to pick some
value n, = n,° and to integrate for m,= mn,° with the ald of varlables (1.6),
and above this, with the aid of the ordinary variables. Conversion from the
lower system to the upper 1s effected by means of Formulas (1.6). Such a
procedure automatically guarantees uniform accuracy of the solution without
condensation of the computational grid (or without any increase in the accu-
racy of interpolation) near the surface of the body.

The boundary conditions on the outer boundary of the boundary layer are
then required only for the outer system (1.1),{(1.2) and have the usual form

[ (§, o0} = g (§ o0) =1
The quantity mn,° 1s practically chosen to correspond to infinity for the
inner sublayer with g,= O . Its value 1s approximately equal to 5 to 8,
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and of course depends on the problem under consideration.

The longltudinal coordinates ¢ and €, are related by Expression

E = §1 + §°
where £° is a specified constant. It 1s clear that as one moves away from
the singular. point the ratio (g/gI) tends to unity. For this reason trans-
formations (1.6) lose their special character. Purthermore, the new varia-
bles asymptotlcally approach the old ones: ¢ -~ , m,— n , and all terms
and coefficients which distinguish them from Equations (1.1) and (1.2) dis-
appear from Equations (1.7) and (1.8).

2., Boundary layers are usually considered on finite or semi-infinite
bodies. However, the solution of certaln problems whose consideration ex-
ceeds the scope of the present paper requires computation of the laminar
boundary layer on & body of infinite length extending upward and downward
along the flow. It is evident that in most cases the thickness of such a
layer at points with finite coordinates must become infinitely large. On
the other hand, in the case of accelerating flows whose velocity at a point
far removed upward along the flow toward infinity 1s equal to zero, it 1s
indeed possible to find solutions which do have physical meaning.

Let us consider the equations of a compressible two-dimensional laminar
boundary layer. We introduce new independent variables in the form

x ¥
e=§ (o), Fwds,  n=0() {pay 2.1)
-—00 0

The functions Fguo) and ®(u,) are as yet undetermined. It s mecessary,
however, that F(uo) be such that integral (2.1) converges as x — — o

Upon conversion to variables (2.1), the momentum equation becomes

F
o7y +atp -+ 28 (£ — o) = 028 iy 2.2
_Fw) a1 w _ F(u) duy
S ST B o @3)

An infinitely distant pdint corresponds to the value & = O . In order
for it to be possible to begin integration from the point € = 0 , it is
necessary that the coefficient in the right-hand side of Equation (2.2) to
vanish for € = 0 . In order to reduce Equation (2.2) to the usual form,
we require fulfillment of the following conditions:

ugF (ug) = 2E@? (u,), o = const, P = const {z — — o0) (2.4)
The solution of system (2.3),(2.%) is of the form
e L1, e
uw=cE® O=Au,® , F=24% Py P (2.5)
The case g = O corresponding to uo= const 18 of no interest in connec-
tion with the present problem.

The above solutions and Formula (2.1) indicate that in the neighborhood
of the point x - — = the dependence uo(x) must be of the form

In u, for a=§
2pA43 S (pi),, dz +- const = {[B/(“ -B) uga-ﬁ)/ﬂ for a5+ @9

Making use of the above Formulas, we can easily show that with o =p we
can assume that o =1 and set
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E— "°c(0) exp [ui § W), da:] @2.7)
1]

It 1s evident that as x - — = we obtailn £ = 0 . The veloclty distri-
bution for the corresponding self-similar solution is of the form

o == 1o (0) exp [er §(pu)w dx] (2.8)
0

The second variant of solution (2.6) for o # 8 leads to the following
formula for the veloclty:

a8 x __B
wo=[u(0) * ~2@~a) 4 { (@, =] P 2.9
L
0
In order for uo(— =) to vanish it 1s sufficlent that 8 > 0 and g > a.

In the neighborhood of an infinitely distant point the integrand in (2.1)
can be estimated by means of Formula

1
(W), F (wo) ~z B* (2.10)

Estimate {2.10) indicates that integral (2.1) converges as x ~ — » .

It should be noted that in those cases where uyg~(— x)* for 0<n <1
it 1s necessary to set o < O . This follows from Formula (2.9) and from
the limitation g > O .

Heretofore we have confined our attention to the momentum equation. As
for the energy equation, the coefficients of almost all terms are the same
as those considered above. The only difference lies in tlre coefficient: of
the so-called dissipative term, which is equal to uo3/H, . However, by
virtue of the assumptions made, the veloclty vanishes at an infinitely dis-
tant point., This causes the dissipative term to vanlsh.

We have therefore shown that the computation of the laminar boundary layer
on an infinite body the flow past which accelerates with laws (2.8) and (2.9)
describing the veloclity distribution in its outer stream reduces to the com=-
putation of an ordinary laminar bound layer on a finite or semi-infinite
body using tranaformations of the type (2.1).
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