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TQe study of the asymptotic behavior of the solutions of Navler-Stokes equa- 
tions for large values of the Reynolds number necessitates the Integration 
of the Prandtl boundary layer equations for nonuniform velocity and enthalpy 
profiles In the Initial section or on bodies extendlm to Infinity upward 
and downward along the flow. 

The present paper offers transformations which make It possible to reduce 
these problems to a form permitting the use of known self-similar solutions 
and well-developed numerical [l and 23 or analytic [3 and 43 methods for the 
integration of boundary layer equations on finite or semi-Infinite bodies In 
unlform free flows. 

The first Section Is an Investigation of a lamlnar boundary layer in a 
compressible gas with-nonuniform velocity and enthalpy profiles in the inl- 
tial cross section. The second section concerns the problem of the boundary 
lay&r on a body extending to Infinity upward and downward along the flow. 

1. The equations of a two-dimensional lamlnar layer In a compressible gas 

can be conveniently considered 

variables) 

(W)’ + ff” + 2 & uo 

In the form proposed in [5] (Dorodnltsyn -Lees 

E = E” + 5 kV)w uoF2j& rl H= ffog(L rl) (1.3) 
0 

where x Is the coordinate measured along the surface of the body from the 

initial point of Lntegratlon: the subscripts 0 and w denote values of 

quantities on the outer boundary of the boundary layer and at the surface of 

tile bCXly : c is the Prandtl number; j=O or 1 for plane and axlsymmet- 

rical flows, respectively; H is the StaGnatIon enthalpy; u Is the velo- 

city component along the x-axis; the prime denotes differentiation with 
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respect to n , the dot differentiation with respect to 

The distinction from the usual form of the variables consists in the fact 

that the quantity F_"# 0 In Formula (1.3). This is necessary, since for 

x = 0 we are given the initial conditions 

f (E", rl) = X(q)* 4S", 11) = "i49 (1.4) 

If, as usual, 5"~ 0 , then by Formula (1.3), the quantity n goes to 

infinity at x0= 0 for small but finite y . 

As regards the function x(n) we assume that the leading term in Its ex- 

pansion as n -+ 0 can be represented in the form 

X(rl) -V (1.5) 

where n is some constant. It is clear that the point (5 = To, q = 0) is 

generally singular for the problem which we have formulated. 

In Integrating the boundary layer equations near this singular point we 

cannot make use of system (1.1),(1.2), since the application of any numerical 

method here would require Infinite condensation of the computational grid as 

the singularity was approached. 

In order to eliminate this difficulty, we propose the use of the following 

variables in the neighborhood of the singular point: (1.6) 

El = i (p& u,+jdz, ql = q (-$)&, n+1 

Q, (El9 rll) = (pr 65 9) 
0 

Upon conversion to these variables, Equations (1.1) and (1.2) become 

- 2E, (qAp” - cp’cp”) = 0 (f.7) 

- 2g, (rp’h - fjfh’) = 0 U.8) 

The prime here denotes differentiation with respect to n1 and the dot 

with respect to e, - 

It is easy to see that for S,= 0 one csn arrive at a solution which 

depends solely on nl . The boundary conditions for Q= 0 are the usual 

ones. Formula (1.6) Indicates that the corresponding value of q1 tends to 

infinity with T1= 0 for arbitrarily small but finite values of n . This 
means that in determining the boundary conditions on the outer boundary 

?l' an for system (1.7),(1.8) one ought to take the corresponding values of 
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the variables in the apecifled,inltial profile for (1 - 0 (i.e. at the wall). 

El = 0, h(% oo)= g(P, O), ~im~'(O, ~1)~~~~~~) 
al+= 

Speciflcally, if the velocity for (1 = 0 In the Initial profile is not 

zero, then n - 0 , and the velocity at the outer boundary of the Inner layer 
Is equal to the velocity at the wall In the external Profile 

9' (0, co) = f' &"A) 

We note also that Equations (1.7) and (1.8) in this case coincide in form 

with Equations (1.1) and (1.2). A local solution ie clearly the 8OlUtiOn 

for a flat plate or for the corresponding flow with a variable velocity at the 

outer boundary. 

Let us also consider the cane n - 1 , uo- const . For cl= 0 , the dia- 

aipative term in the energy equation vanishes for all 12 # 0 ; this 18 quite 

understandable from the physical standpoint. The momentum equation and 

boundary conditions for n = 1 and N = 1 become 

(p','+ +$@+~'a =(), 1it-n 9" = f” (f, 0) for tjl -+ 00 

The solution of this problem is the local Couette solution 

cp" (0, 91) = f” (E”, 0) = const 
Thus, Initial profiles (1.4) are specified OA the first characterlatic In 

the outer part. Near the singular point the problem does not require initial 

conditions and reduces, a8 in the conventional case, to the integration of a 

system of ordinary differential equations with boundary eondltlOn8 specified 

on different boundaries of the region. 

The boundary conditions on the body surface for a nonpermeable surface at 

a specified temperature are of the usual form. 

cp(0, 0) 4 cp' (0, 0) = 0, h (0, 0) = k0 

MaMng use of Formulas (l-6), one can readily write out the boundary con- 

ditions for other caaen. 

On the other characterlatlcs 5 = const or cl= conat integration can 

be carried out over any variables. It is convenient, however, to piulc some 

value '11- 1X0 and to Integrate for (1," nl“ with the aid of variablea (1.6), 

and above this, with the ald of the ordinary variablea. Convereion from the 

lower system to the upper is effected by means of Formulae (1.6). Such a 

procedure automatically guarantees uniform accuraoy of the solution without 

condensation of the computational grid (or without any increase ln the accu- 

racy of interpolation) near the surface of the body. 

The boundary conditions on the outer boundary of the boundary layer are 

then requfred only for the outer system (1.1),(1.2) and have the usual form 

f'(E, oo) = g(E, oo) = 1 

The quantity fllo Is practically chosen to correspond to Infinity for the 

Inner sublayer with P;~= 0 . Its value Is approximately equal to 5 to 8, 
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and of course depends on the problem under consideration. 

The longitudinal coordinates 5 and 5, are related by Expression 

% = %l + E” 
where 5' 1s a specified constant. It Is clear that as one moves away from 

the slngular.polnt the ratio (5/t1) tends to unity. For this reason trans- 

formations (1.6) lose their special character. Furthermore, the new varla- 

bles asymptotically approach the old ones: q - J , ql- q , and all terms 
and coefficients which dlstlngulsh them from Equations (1.1) and (1.2) dle- 

appear from,Equatlons (1.1) and (1.8). 

0. Ihmdary layers are usually considered on finite or semi-Infinite 
bodies. However, the solution of certain problems whose consideration ex- 
ceeds the scope of the present paper requires computation of the lamlnar 
boundary layer on a body of infinite length extending upward and downward 
along the flow. It Is evident that In most cases the thickness of such a 
layer at points with finite coordinates must become Infinitely large. &I 
the other hand, In the case of accelerating flows whose velocity at a point 
far removed upward along the flow toward Infinity Is equal to zero, It ie 
Indeed possible to find solutions which do have physical meaning. 

Let us consider the equations of a compressible two-dimensional lamlnar 
boundary layer. We introduce new Independent variables in the form 

x 

4= 1 (Pk4,F(%)k 
Y 

?=O(uo) P& s 
(2.1) 

---co 0 

The functions Fug) and a(&,) are as yet undetermined. It s necessary, 
however, that F(&, f be such that Integral (2.1) converges as x - - 0~ . 

Upon conversion to variables (2.1), the momentum equation becomes 

(Nf”)’ + aff” + 2p ($- - fz) = -$f$$ (f’f” - f’f”) 

An lnflnltely distant pblnt corresponds to the value 5 - 0 . In order 
for it to be possible to begin Integration from the point f - 0 , It Is 
necessary that the coefficient ln the right-hand side of Equation (2.2) to 
vanish for S-0. In order to reduce Equation (2.2) to the usual form, 
we require fulfillment of the following conditions: 

ufl (%I) = %@'(uo), a = con&, fi= con& ( I-+--00) (2.4) 

The solution of system (2.3),(2.4) Is of the form 

%B-. 

ZdO=& @=Au,, F= 2A"c 
-j_ I+y_ 

u. (2.5) 

The case B - 0 corresponding to u,,- conet Is of no Interest In connec- 
tlon with the present problem. 

The above solutions and Formula (2.1) Indicate that In the neighborhood 
of the point x - - = the dependence uO(r) must be of the form 

2PA’l (p&dr+const= { 
In* for a=P 

[B/(a-p)] f~IpI-B)/fi for a# P (2.6) 

Making use of the above Formulas, we can easily show that with a - B we 
can assume that a I 1 and set 
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(2.7) 

It Is evident that as x + -m we obtain 5 = 0 . The velocity dlstrl- 
butlon for the corresponding self-similar solution Is of the form 

(2.8) 

The second variant of solution (2.6) for a # 6 leads to the follbwing 
formula for the velocity: 

a-8 
ZJ~= [u,,(O)7-2@-a)A~ 

j 1 (#qodz -A (2.9) 
L 

0 

In order for u,,(- =) to vanish It Is sufficient that 0 > 0 and e > a. 
In the neighborhood of an Infinitely distant point the lntegrand in (2.1) 
can be estimated by means of Formula 

--j&--l 
(P&F @0)-z (2.10) 

Estimate .(2.10) Indicates that integral (2.1) converges as .Z - - 0 . 
It should be noted that In those cases where b0 _ (-x)' for 0 < n < 1 

It Is necessary to set a c 0 . This follows from Formula (2.9) and from 
the llmltatlon $ > 0 . 

Heretofore we have confined our attention to the momentum eWatlOn. AS 
for the enertzv eauatlon. the coefficients of almost all terms are the Same 
as those coniideied abode. The only difference lies In the coefficient, of 
the so-called dissipative term, which Is equal to u,,~/& . However, by 
virtue of the assum~tlone made; the velocity vanishes &an Infinitely dls- 
tant point. This causes the dissipative term to vanish. 

We have therefore shown fhat the computation of the lamlnar boundary layer 
on an Infinite body the flow past which accelerates with laws (2.8) and (2.9) 
describing the velocity distribution In Its outer streatn reduces to the com- 
putatlon of an ordinary. laminar boundarJt21;Ty on a finite or semi-infinite 
body using transformations of the type 
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